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Abstract
Strain fields in truncated and un-truncated InAs quantum dots with the same
height and base length have been compared numerically when the dots
are vertically stacked in a GaAs matrix at various stacking periods. The
compressive hydrostatic strain in truncated dots decreases slightly as compared
with the un-truncated dots without regard to the stacking period studied.
However, the reduction in tensile biaxial strain, compressive radial strain and
tensile axial strain was salient in the truncated dot and the reduction increased
with decreasing stacking period. From such changes in strain, changes in the
band gap and related properties are anticipated.

1. Introduction

The three-dimensionally confined quantum dot shows unique properties as compared with
bulk, one-dimensionally confined (quantum well) or two-dimensionally confined (quantum
wire) structures. For instance, the dot yields atom-like electronic states, e.g. discrete energy
levels [1] within the band gap of the matrix material, and thus it has received considerable
attention for opto-electronic applications [2, 3]. The most-studied quantum dot system today
is based on InAs (or Inx Ga1−x As) quantum dots in a GaAs matrix fabricated by various
processing techniques [4–8].

The lattice mismatch strain between an InAs dot and GaAs matrix is 6.7% and this
inherent strain is accommodated in the quantum dot structure entirely elastically without plastic
relaxation via formation of crystal defects such as dislocations. The reported shapes of InAs
quantum dots embedded in GaAs are more or less pyramidal: lens-like shape, pyramid or
truncated pyramid. The difference in the truncated or un-truncated state in the dot-embedded
structure certainly results in a change in the strain field [9, 10].
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The strain field in or around the quantum dot results in a change in electronic structure
and therefore in the opto-electronic properties of the dot by modifying the energies and
wavefunctions for confined carriers [11]. The hydrostatic component of strain εhyd , for
example, usually shifts the conduction and valence band edges while biaxial strain εbi modifies
the valence bands by splitting the degeneracy of the light- and heavy-hole bands [12]. Hence
studies in the strain field in or around a quantum dot with either a truncated or un-truncated
shape have received much interest from many researchers [8–10, 13–20].

For practical device applications, quantum dots are vertically stacked to form multi-
layers for a high spatial density of dots and an optimal device performance [21]. In the
case of laser applications, for instance, stacking yields a higher modal gain. Such a narrow
vertical stacking, i.e. a vertical periodicity of less than several nanometres, seems to result in a
change in physical properties perhaps associated with the strain field interaction between the
dots [22], since the strain field from each quantum dot extends up to about 40 nm [23]. Since
strain field interaction in a narrow-stacked structure would depend on the shape of the dot,
i.e. whether it is truncated or not, a comparative understanding of the strain field interaction
for different dot shapes is of importance. However, most previous research on the strain field
have focused on the unstacked single-layered dot state [8–10, 13–19] and not much work has
been performed for the multi-stacked structure [20]. In a recent analytical work [20], the
strains for truncated and un-truncated dots are reported for the stacked structure, whilst neither
a quantitative comparison of the influence of dot truncation on strain change is addressed nor
the information of strain change, especially for different stacking periods, is available since
the strains were calculated at a specific stacking period. Thus, in the present work, the strain
field in or around the dot due to strain field interaction in a series of multi-stacked structure
has been quantitatively studied for the two different shapes of the quantum dot, i.e. truncated
and un-truncated shapes, and the change with dot truncation is reported as a function of the
stacking period.

Many methods of modelling quantum dot hetero-structures have been developed to analyse
the strain field. The methods are categorized largely into two groups. The first group is
the atomistic approach [24–28] utilizing atomic potentials. Perhaps this approach provides
the most accurate results, while it demands extensive computational resources and thus has
been utilized for relatively simple structures such as unstacked single layered dot structure.
The second is based on the continuum elasticity (CE) assumption. This approach has been
experimentally verified to be valid for layers as thin as the monolayer level [29, 30]. In
theoretical works comparing different numerical methodologies [26–28], the CE and atomistic
approaches showed good agreement for a layer whose thickness was of the order of five atoms.
A subtle difference was observed only in regions where strain was changing rapidly, namely
the edge of the structure, implying that the CE approach is very cost efficient [26–28].

The CE approach, in turn, can be divided into two categories. The first one is the analytical
method based on Eshelby’s inclusion theory [31] under the assumptions of elastic isotropy
and uniformity of elastic properties. Although this method has been extended to handle
more complicated geometry of inclusions such as pyramids, it treats inclusions in an infinite
medium [9, 19, 20], and also the accommodation of anisotropic properties are difficult [32].
Thus this may not be appropriate for our purpose,which focuses on the vertically stacked multi-
dots especially with varying stacking periodicity in the vertical direction and lateral periodicity.
The second CE approach for nanostructures is the numerical method. This generally utilizes the
finite difference [8] or finite element methods [10, 13–18]. Much research on the strain field of
the single dot structure has been performed by the finite element method and the validity of finite
element analysis has been reported based on experiments [33]. It is appropriate especially for
complex geometries like the stacked multi-dots while it requires less computational resources
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than the atomistic approach. Thus the finite element method based on the CE has been utilized
in the present study.

2. Numerical analysis

The reported shapes of InAs quantum dots embedded in GaAs have been hemispherical [34],
multifaceted domes [34] or a lens-like shape [6, 7, 22], whilst several other groups reported
dots with pyramidal shapes [8] or truncated pyramids [35]. It has been raised, based on detailed
contrast evidence, that there is a possibility that some different geometric features may result
from an illusion induced by strain fields in TEM observations [36]. The quantum dots are often
modelled in axial symmetry, i.e. conical dots [14–18] in numerical calculations of the strain
field because the time-consuming three-dimensional calculations (with other dot shapes) give
no significantly different results [10, 15]. This work utilizes the axisymmetric geometry.

Figure 1 shows the half-space of the multi-layer-stacked geometry with un-truncated and
truncated dots modelled for the finite element analysis. The base and height of the InAs dot
were 20 and 4.3 nm, respectively, and the GaAs cap layer and buffer were 55 and 50 nm thick,
respectively. The modelled vertical periods of the dot P were 5.5, 6.0, 7.0, 8.0 and 10 nm. The
range of the investigated period herein has been selected on the basis that a period beyond about
half of the base length of the dot (10 nm in this paper) did not guarantee vertical stacking during
processing while too close a spacing resulted in a severe distortion of the stacked structure [37].
The lower limit period, 5.5 nm, selected here is based on the experimental observation that
there seems to be a slight distortion of the stacked structure in this case [6, 7]. The reference
state of the dot structures with varying stacking period was selected in this work as the structure
with a period of infinity. This was simulated by replacing the multi-layer with an unstacked
single layer for each type of dot. The free boundary at the bottom and top of the model did
not result in any appreciable change in strain field in or around the single-layered dot when
the thickness of the cap layer and buffer layer was more than about 50 nm, indicating that the
single-layered model effectively simulates a period of infinity.

The base length, height and period of 5.5 nm were based on experimental observations
elsewhere [6, 7]. Since the shape of the vertex of the experimentally observed dot with
P = 5.5 nm was not unambiguous, although the base and height of the dot are relatively clear,
as is often the case for other nano-scaled dot structures, the apex shape of the dot is assumed to
be either un-truncated or truncated in this work for modelling and comparison purposes. The
strain fields in such two different geometries with the same height were also compared in the
unstacked structure in the literature [9, 10] and thus would provide a comparison standard for
the present work. Although the dot geometries in the current work are modelled based on the
two different possibilities of experimental observation, recent progress in processing allows
truncation of the dot in the stacked structure [38], indicating that comparison of the strain field
for the two different dot geometries is of importance.

Although about ten dot layers were fabricated in experiments, only seven layers were
modelled in the present work for simplicity because, in a separate preliminary study, seven
layers were enough for evaluation of the stacked structure. The mean lateral periodicity of the
structure (the mean lateral inter-dot distance in figure 1) was assumed to be 60 nm and it was
taken into account by fixing the degrees of freedom of the nodes at the right end of the model
against radial displacement. This was an additional boundary constraint to the axisymmetry of
the z axis in the model. The axisymmetric eight-node bi-quadratic quadrilateral elements were
employed in meshing. Young moduli of constituent materials were assumed to be 85.5 GPa
for GaAs and 51.3 GPa for InAs, and Poisson ratios were 0.316 for GaAs and 0.354 for InAs.
The lattice mismatch strain ε0 = (aGaAs − aInAs)/aInAs = −0.067 between the dot and matrix
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Figure 1. Geometry of models for the finite element analysis of a strain field when the vertical
period of stacking is 7 nm. Stacked structures with un-truncated quantum dot (a) and with truncated
quantum dot (b).

was simulated by setting the thermal expansion coefficient of the dot and the GaAs matrix
to 6.7 × 10−2 and 0 K−1, respectively, and raising the temperature by 1 K [10, 15–18]. A
general-purpose commercial finite element code ABAQUS was used for calculations.

3. Results and discussion

3.1. Overall strain profiles for each shape of dot structure

It is expected that the difference in the geometry of the two types of quantum dot structures
considered in this work would result in different overall strain distributions within the structures.
In figure 2, the strain fields along the axial position in these two structures with the stacking
period of 7 nm are compared. As can be seen, strain profiles show quite periodic characteristics



Comparison of strain fields in truncated and un-truncated quantum dots 3693

0 10 20 30 40 50

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

M

 Untruncated
 Truncated

S
tra

in
, ε

 (r
r)

Axial position (nm)

0 10 20 30 40 50

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

M

 Untruncated
 Truncated

S
tra

in
, ε

 (z
z)

Axial position (nm)

Figure 2. Strain fields along the axial position of the stacked structures with two different types of
dot when the stacking period is 7 nm.

for each dot type and this was also the case for other stacking periods considered. Since the
strain fields in the layers from the second to the sixth are similar both quantitatively and
qualitatively, the region corresponding to the fourth (mid-) layer of the dot, denoted as ‘M’
in figure 2, was taken as representative of the multiple-layer-stacked structures for both the
un-truncated and truncated dots. As the number of stacked layers increases, characterizing
the mid-layer is more important since more layers are in a similar strain state to the mid-layer.
Thus in this work, the strain fields in the fourth layers for each dot shape are further investigated
for detailed analysis.

As the difference in the geometry of quantum dots resulted in different strain distributions
in the structure, so did it within the dots. Figure 3 shows the strain contours in the cross
section of the un-truncated and truncated quantum dots in the mid-layers for the stacking
period of 7 nm. The minimum in the strain is in the apex region of the un-truncated dot whilst
it is away from the centre of the truncated dot at the edge between the dot plateau and the
slope. This results in a less rapid strain gradient along the axial region of the truncated dot as
compared with the un-truncated one, consistent with the strain profiles in figure 2. This feature
is qualitatively similar to what was shown for an unstacked single-layered dot embedded in
a semi-infinite medium of a GaAs matrix in the literature [9, 10, 20]. Thus it is suggested
that the overall change in strain profile with dot truncation is also maintained in the stacked
structure. However, as is clear in figure 3, the magnitude of the strain at an arbitrary location
in the dot is different for the two cases.

3.2. Dot strain fields at mid-layers of each dot structure

From the comparison of the strain fields in figures 2 and 3, it was predicted that radial and axial
strain components εrr and εzz in two types of quantum dots are different. Hence, the difference
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(a)

(b)

Figure 3. Contour diagrams comparing radial and axial strain components for the dots in mid-layer
of the structures with an un-truncated dot (a) and truncated dot (b) when the stacking period is 7 nm.

(This figure is in colour only in the electronic version)

in εhyd and εbi between the two dot shapes is also expected as they are functions of εrr and εzz

via εbi = εzz − εrr and εhyd = εzz + 2εrr [9]. For quantitative analysis of the strain fields, the
strain components εrr , εzz , εhyd and εbi along the central axis of each dot in the mid-layers are
compared in figures 4 (un-truncated) and 5 (truncated) for various stacking periods2. It is noted
in figures 4 and 5 that the changes in strain of both types of dots in mid-layers are obvious with
vertical period for εrr , εzz and εbi , while εhyd shows only a slight change. For the un-truncated
dot (figure 4), the change in strain with stacking period is more apparent at the base of the dot
while it shows a relatively smaller gradient across the axial position for the case of a truncated
dot (figure 5). This trend is consistent both qualitatively and quantitatively with the analytical
result of Pearson and Faux [20]. They reported strain profiles along the central axis of both
un-truncated and truncated pyramidal dots in the mid-layer of the five-layer-stacked structure.
Their results are based on a stacking period of 8 nm and are thus comparable to the similar
stacking period of 7 nm in figures 4, 5.

For the quantitative characterization of the change in strain with stacking period for each
type of dot in figures 4 and 5, we selected the strain value at the base of the dot in the same
figures, since the strain in volume around the centre of the dot base, which takes most of the
dot volume, would suitably represent the overall trend of the change in the dot strain field.
Figure 6 quantifies the change in strain at this region (r = z = 0) as a function of stacking
period P for both types of dots. As seen in the figure, the trend in strain with stacking period
is qualitatively similar for the two types of dots studied herein. It is noted in figure 6(a)
that the radial compressive strains, εrr , for both dots shift toward more negative values with
increase in stacking period. This is because the larger volume of GaAs matrix located between

2 In interpreting figures 4 and 5, care must be taken since the base of the dot was taken as the reference position,
i.e. z = 0 in figures 4 and 5. This relative axial position should not be confused with the absolute origin in figure 2.
Also, note that the stacking period of infinity corresponds to an unstacked single dot layer.
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Figure 4. Comparison of the strain field in or around the mid-layer of the stacked structure with
an un-truncated dot at varying stacking periods.

the vertically stacked dots prevents the expansion of the dots more efficiently when they are
getting far away. The trend in vertical strains, εzz , for both dots are reversed from the radial
strains due to the Poisson effect, i.e. the tensile strains εzz are becoming more tensile as the
stacking period increases. However, the amount of tensile shift in εzz as P increases from 5.5
to 10 nm is about twice the amount of compressive shift in εrr for both types of dots. This
would be responsible for the negligible change in hydrostatic strains (εzz + 2εrr ) with P in
figure 6(b) since the shift in εzz and 2εrr offset each other. For the case of biaxial strains,
however, the tensile shift is most salient with P in figure 6 because the tensile shift in εzz and
compressive shift in εrr reinforce the shift in εbi (=εzz − εrr ).

The change in axial strain εzz in figure 6 can be compared with some existing work. In
figure 6, εzz in a truncated dot is positive (at the dot base) for the unstacked dot (stacking period
is infinity). The existing work for the unstacked and fully embedded single layered dot reports
the same result [9–19]. As seen in figure 5, not only the base but also the apex is actually also
positive when P is infinite. However, the tensile εzz decreases as the dots are more closely
stacked (as the stacking period decreases) and then changes its sign to compressive below
about 7.7 nm of stacking period (figure 6). This phenomenon is due to the interaction of the
strain field originating from each stacked dot. In [20], εzz at the dot base is slightly positive
(almost zero) at a stacking period of 8 nm (in mid-layer) but the minor error is acceptable
for the two works based on different dot models and approaches: ours are conical dots based
on FE whilst theirs are pyramidal dots based on an analytical approach. Indeed, only this
much difference is found for different dot models, supporting the use of conical dot geometry
and the FE approach. There has also been experimental evidence qualitatively supporting the
result in figure 6, especially for εzz . In [39], the experimentally observed εzz in a multi-stacked
truncated dot at a stacking period of 13 nm was also tensile, confirming the result in figure 6.
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Figure 5. Comparison of the strain field in or around the mid-layer of the stacked structure with a
truncated dot at varying stacking periods.
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Figure 6. Comparison of four strain components at the central base of the dot (r = 0) for the two
different types of dot at various vertical periods of stacking.

But quantitative comparison with theirs is not pursued here since their specimen was a cleaved
STM sample which had different boundary conditions from the bulk specimen considered in
the current work.

3.3. Comparison of strain between the two shapes of dots

So far we have discussed the change in strain at the dot base region as the stacking period
increases (figure 6). Now it is necessary to discuss the difference between the dotted and
full curves in figure 6, i.e. comparison between the two different dot shapes. Comparing the
truncated state (dotted curve) with reference to the un-truncated state (full curve) in figure 6,
it is noted that the compressive radial strain in the axial region of the truncated dot has been
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Figure 7. Change in strain attenuation due to dot truncation as a function of the stacking period.

shifted in the tensile direction (figure 6(a)), i.e. attenuated to be less compressive at various
stacking periods. This is because there is less available volume of GaAs matrix to prevent the
dot expansion between the vertically aligned truncated dots as compared with un-truncated
ones. The change in vertical strain, εzz , with truncation is reversed from a radial strain due to
the Poisson effect, i.e. the tensile εzz in figure 6(a) has shifted in the compressive direction to
be attenuated as compared with the un-truncated case.

The difference between the two curves (dotted and full) in biaxial and hydrostatic strain
in figure 6(b) can be explained by the very similar way that was used to explain the reason
why these strains changed as the stacking period increases, as mentioned in section 3.2. The
shift in hydrostatic strain from the un-truncated to the truncated state in figure 6(b) is small.
This is because the amount of tensile shift (difference between the two curves) in εzz from
the un-truncated state (for instance, about 0.0143 when P = 7 nm) is about twice the amount of
compressive shift in εrr (0.0064 when P = 7 nm), which diminishes the change in hydrostatic
strain (εzz + 2εrr ) with truncation. For the change in biaxial strain, however, the compressive
shift from the un-truncated state is most salient because the compressive shift in εzz and the
tensile shift in εrr reinforce the shift in εbi (=εzz − εrr ) with truncation as before.

It is also noted in figure 6 that the difference in εrr , εzz and εbi between the two types of the
dots increases as the stacking period decreases, although that in εhyd is relatively less sensitive
with the stacking period. It is thus necessary to quantify the degree of strain reduction in the
truncated dot as compared with the un-truncated one at varying stacking periods. For this
purpose, the reduction in strain values in a truncated dot relative to those in an un-truncated
dot are shown on a percentage scale in figure 7. As seen in figure 7, the decrease in hydrostatic
strain, εhyd , is trivial (about 1–2%) and roughly similar at various stacking periods whilst other
strain components show significant increases in strain attenuation with decreasing P . The
attenuation in axial strain εzz , biaxial strain εbi and radial strain εrr in the truncated dot is
remarkable in stacked structures (as compared with unstacked states when P is infinity). For
the case of biaxial strain, almost all the tensile biaxial strain is relieved when the stacking
period reaches 5.5 nm and there is about 22.8% attenuation in compressive radial strain εrr at
the same stacking period. As seen in figure 7, the attenuation in tensile axial strain εzz in a
truncated dot is most rapid as the stacking period decreases. Actually all the tensile axial strain
is relieved at 7 nm < P < 8 nm (about 100%) and then the sign of strain in a truncated dot
is reversed to compressive and increases in the compressive direction as the stacking period
decreases further. Thus the strain attenuation when P < 8 nm is not shown for εzz in figure 7.

The estimation of strain attenuation so far has been based on the strain near the base
(r = z = 0) of the dot. It is now necessary to check the trend of strain attenuation in other dot
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regions by revisiting figure 3. Comparing the strain at the region common to each type of dot
in figure 3, the compressive strain is indeed less compressive and the tensile one is less tensile
in the truncated dot at an arbitrary dot position, confirming that the strain attenuation in the dot
takes place at other dot regions as well. Looking into the truncated dot in figure 3, the strain
in most of the newly present regions due to the truncation is similarly in a relaxed strain state
as the neighbours except for the region of strain minimum. Such a small region, e.g. inside
the contour of −0.0237 for εrr and −0.0235 for εzz , was simply shifted from the apex of the
un-truncated dot and hence the overall trend of the strain attenuation in the truncated dot across
the entire volume is confirmed.

3.4. Further discussions

Addressing the physical significance of such strain attenuation in a truncated dot at various
stacking periods (figures 6 and 7), the significant change in strain field and associated
piezoelectric potential may lead to a modification of electronic states [11] and energy level
splitting [40]. Since the calculation of the optical properties for the current complicated multi-
stacked structure has not been the scope of the current work, quantitative correlation of the
changes in strain components to the optical properties is not pursued here. However, the
negligible change in hydrostatic strain component with dot truncation (figure 7) is interpreted
to yield no significant change in conduction band edges whilst the apparent attenuation in
biaxial strain component with dot truncation (figure 7) is expected to alter the valence band
edges significantly [12]. Since the attenuation in biaxial strain has been reported to decrease the
valence band edges to increase the band gap [28, 41, 42], the case of biaxial strain herein with
dot truncation is expected to yield a similar result. However, care has to be taken in predicting
the actual band gap-related physical properties with truncation, such as photoluminescence
properties [6, 7, 43, 44], because they are also governed by other sources such as quantum
mechanical coupling between the stacked multi-dots [28] in addition to the influence of strain
studied here.

3.5. Summary and conclusions

Strain fields in truncated InAs quantum dots and equivalent un-truncated ones were examined
numerically. It was assumed that both of the dots have the same height (4.3 nm) and base length
(20 nm) and are vertically stacked in a GaAs matrix at various stacking periods (5.5–10 nm).
The comparison of the strain components was carried out for the two different types of quantum
dots located in the mid-layer of the stacked structures, which is regarded as representative of
the stacked nanostructures.

The compressive hydrostatic strain in a truncated dot was relieved slightly (1–2%)
compared with the un-truncated one without regard to the stacking period. However, the
attenuation in other strain components was significant. The attenuation for biaxial, axial and
radial strains with dot truncation was minimal at the stacking period of infinity (when the
structure contains an unstacked single dot layer) whilst the attenuation increased significantly
as the dots were vertically stacked closer, i.e. as the stacking period decreases. The significant
attenuation in strain may lead to a modification of electronic states and valence band edges to
increase the band gap, whilst care has to be taken in predicting band gap-related properties with
dot truncation since other sources, such as quantum mechanical tunnelling between stacked
dots, can also be involved.
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